Complex Numbers Exercises

1. write in the form $x+i y$:
(a). $\frac{1}{2+2 i}$
(b). $\frac{1}{i^{3}}$
(c). $i(1+i)(1-i)^{2}$
2. Write in the polar and the exponential polar form:
(a). $\frac{1}{2+2 i}$
(b). $-1+i \sqrt{3}$
(c). $\sqrt{1+i}$
3. Give all roots (solutions) of $z^{2}+z+1=0$.
4. Split into factors: $z^{2}+1$.
5. Multiplying a complex z by i is the equivalent of rotating z in the complex plane by $\pi / 2$.
(a). Verify this for $z=2+2 i$
(b). Verify this for $z=4-3 i$
(c). Show that $z i \perp z$ for all complex z.
6. Calculate $\operatorname{Im}\left((i+1)^{8} z^{2}\right)$ for $z=x+i y$.
7. Find an expression for $\sin (3 \theta)$ in terms of $\sin (\theta), \cos (\theta)$.
8.(advanced) Solve $z^{4}+16=0$ for complex z, then use your answer to factor $z^{4}+16$ into two factors with real coefficients.
