Complex Numbers Exercises

1. write in the form x + iy: (a). $\frac{1}{2+2i}$ (b). $\frac{1}{i^3}$ (c). $i(1+i)(1-i)^2$

2. Write in the polar and the exponential polar form: (a). $\frac{1}{2+2i}$

(a). $\frac{1}{2+2i}$ (b). $-1+i\sqrt{3}$ (c). $\sqrt{1+i}$

3. Give all roots (solutions) of $z^2 + z + 1 = 0$.

4. Split into factors: $z^2 + 1$.

5. Multiplying a complex z by i is the equivalent of rotating z in the complex plane by $\pi/2$.

- (a). Verify this for z = 2 + 2i
- (b). Verify this for z = 4 3i
- (c). Show that $zi \perp z$ for all complex z.

6. Calculate Im $((i + 1)^8 z^2)$ for z = x + iy.

7. Find an expression for $\sin(3\theta)$ in terms of $\sin(\theta), \cos(\theta)$.

8.(advanced) Solve $z^4 + 16=0$ for complex z, then use your answer to factor $z^4 + 16$ into two factors with real coefficients.